Superficie de subdivisión Doo–Sabin - Enciclopedia
En la grafica por computadora en 3D, una superficie de subdivisión Doo–Sabin es un tipo de superficie de subdivisión basada en una generalización de los B-spline uniformes bi-cuadráticos, mientras que Catmull-Clark se basó en los B-spline uniformes bi-cuadráticos generalizados. El algoritmo de refinamiento de subdivisión fue desarrollado en 1978 por Daniel Doo y Malcolm Sabin.
El proceso Doo-Sabin genera una nueva cara en cada vértice original,
n
nuevas caras a lo largo de cada arista original, y
n²
nuevas caras en cada cara original. Una característica principal del método de subdivisión Doo–Sabin es la creación de cuatro caras y cuatro aristas (valencia 4) alrededor de cada nuevo vértice en la malla refinada. Un inconveniente es que las caras creadas en los vértices originales pueden ser triángulos o n-gones que no necesariamente son coplanares.
Evaluación
Las superficies Doo–Sabin están definidas recursivamente. Al igual que todos los procedimientos de subdivisión, cada iteración de refinamiento, siguiendo el procedimiento dado, reemplaza la malla actual con una más suave y refinada. Después de muchas iteraciones, la superficie se acercará gradualmente a una superficie límite suave.
Al igual que para las superficies Catmull–Clark, las superficies límite Doo–Sabin también pueden evaluarse directamente sin refinamiento recursivo, mediante la técnica de Jos Stam. Sin embargo, la solución no es tan eficiente computacionalmente como para las superficies Catmull–Clark porque las matrices de subdivisión Doo–Sabin no son (en general) diagonalizables.
Véase también
Expansión (operación geométrica equivalente) - se mueven las caras separadas después de haber sido separadas, y se forman nuevas caras
Notación de poliedros de Conway - un conjunto de operadores de poliedros topológicos y mallas poligonales relacionadas
Superficie de subdivisión Catmull-Clark
Superficie de subdivisión Loop
Enlaces externos
Superficies Doo–Sabin